

 2021 Testonica Lab

EUROPEAN SPACE AGENCY CONTRACT REPORT

The work described in this report was done under ESA contract. Responsibility
for the contents resides in the author or organisation that prepared it.

Incentive Scheme / EXPRO+ and GSTP activity
4000124897/18/NL/CBi

SoC-HEALTH

On-Chip Health Monitoring and Fault Management
for SoC Health-Awareness in Space Missions

Final Report

Document revision 1.1

SoC-HEALTH - Final Report Notices ● ii

Notices

This document is intended to fulfil the contractual obligations of the SoC-HEALTH project concerning
the Final Report – FR, described in ESTEC Contract no 4000124897/18/NL/CBi.

For more information, please contact Testonica Lab at email: info@testonica.com

About Testonica Lab. Founded in 2005, Testonica Lab has become a world-wide pioneer and leader
in developing automated synthetic and virtual embedded instrumentation. Currently it offers cutting-
edge technologies and tools for high-speed test access and at-speed test application based on JTAG
and FPGAs, which are used by leaders in consumer electronics, telecom, automotive, military, aero-
space, industrial electronics, entertainment and fundamental science segments. Testonica Lab has
deep competence in the area of building highly optimized hierarchical system health management
networks for in-field error detection and diagnosis. Testonica Lab focuses on technologies like em-
bedded CPUs, microcontrollers, reconfigurable FPGAs, and SoC-FPGAs.

The copyright in this document is vested in Testonica Lab. This document may only be reproduced in
whole or in part, or stored in a retrieval system, or transmitted in any form, or by any means elec-
tronic, mechanical, photocopying or otherwise, either with the prior permission of Testonica Lab or in
accordance with the terms of ESTEC Contract no 4000124897/18/NL/CBi.

SoC-HEALTH - Final Report Summary ● iii

Table of Revisions
Version Date Description and reason Author Affected sections
0.1 May 29, 2021 Initial structure created A. Jutman All sections

0.2 May 30, 2021 Writing Introduction A. Jutman 1

0.3 May 31, 2021 Updating Introduction A. Jutman 1

0.4 June 4, 2021 OCFM Hardware chapter A. Jutman 2

0.5 June 5, 2021 OCFM HW update A. Jutman 2

0.6 June 6, 2021 OCFM HW update A. Jutman 2

0.7 June 7, 2021 OCFM SW chapter A. Jutman 3

0.8 June 11, 2021 SW and experiments A. Jutman 3, 4

0.9 June 13, 2021 Summaries, conclusions A. Jutman Exec, 5, 6

1.0 June 14, 2021 Preparing for submission A. Jutman All sections

1.1 June 21, 2021 Fixing several typos A. Jutman All sections

Authors

Konstantin Shibin, Testonica Lab
Sergei Devadze, Testonica Lab
Anton Tšertov, Testonica Lab
Artur Jutman, Testonica Lab

Executive Summary

This document summarizes the development and evaluation done in frames of the SoC-
HALTH project, which aimed at integration as well as the evaluation in terms of perfor-
mance and HW overhead of the OCFM technology that comprises an original HW archi-
tecture, fault handling and system health monitoring methodology, and respective soft-
ware functions.

The OCFM technology TRL 4 demonstrator is based on 8-core LEON3 soft CPU imple-
mented on Kintex7 FPGA and running Linux OS. The data collection and emergency sig-
naling infrastructure based on an IEEE Std. 1687 (IJTAG) network that collects real-time
data from 1262 checkers embedded right inside the CPU offers immediate fault detection
and diagnosis.

The experimental evaluation has demonstrated that the OCFM hardware can handle over
100000 faults per second with the average single fault processing time being in the order
of 10-3s, which confirmed the expected high efficiency of IJTAG-based fault and fitness
data collection approach. The OCFM achieves full performance with low overhead in
terms of latency, system load and used area (around 10% area in HW overhead).

Future work in fault management and active fault tolerance has to be primarily focused
on further improvement of the fault handling functions and scenarios in the software and
applications to heterogeneous high-performance computing platforms being currently
developed by ESA.

SoC-HEALTH - Final Report List of Abbreviations ● iv

List of Abbreviations

ASIC Application-Specific Integrated Circuit
ADAS Advanced Driver Assistance Systems
AFPN Asynchronous Fault Propagation Network
AHB Advanced High-Performance Bus
AM Asymmetric Multi-Processing
APB Advanced Peripheral Bus
API Application Programming Interface
ASIP Application-Specific Instruction-Set Processor
BIST Built-in Self Test
BRAM Block RAM
BUFG Global clock buffer
CAM Core Affinity Mask
CLI Command Line Interface
CMOS Complementary Metal Oxide Semiconductor
COTS Commercial off-the-shelf
CPS Cyber-Physical System
CPU Central Processing Unit
CRC Cyclic Redundancy Check
CSU Capture, Shift, Update
DAC Digital to Analog Converter
DFF D-type Flip-flop
DFT Design for Test
DI Data In
DM Dependability Manager
DO Data Out
DR Data register
DSM Deep Sub-Micron
DSP Digital Signal Processor
ECC Error-correcting code
EDAC Error detection and correction
EEPROM Electrically Erasable Programmable Read-Only Memory
ELF Early-life failure
ESIB Extended SIB
FCX-SIB SIB extended with F, C and X emergency flag handling logic
FDIR Fault Detection, Isolation and Recovery
FF Flip-flop
FM Fault Manager
FMI Fault Management Infrastructure
FPGA Field-Programmable Gate Array
FPU Floating Point Unit
FSM Finite State Machine
GPU Graphics Processing Unit
HCI Hot carrier injection

SoC-HEALTH - Final Report List of Abbreviations ● v

HM Health Map
HMP Heterogeneous Multi-Processing
HSIB Hierarchical SIB
HW Hardware
IC Integrated Circuit
ICL Instrument Connectivity Language
IJTAG Internal JTAG, denotes IEEE Std. 1687 infrastructure as a whole
IM Instrument Manager
IMCS Instrument Manager command/status
IO Input/Output
IOCTL Input Output ConTroL
IP Intellectual Property
IPMI Intelligent Platform Management Interface
IRQ Interrupt Request
ISR Interrupt Service Routine
JTAG Joint Test Action Group, also a short name for IEEE Std. 1149.1
LAN Local area network
LKM Loadable Kernel Module
LUT Look-up Table
LUTRAM LUT as memory
MCU Microcontroller Unit
MMCM Mixed-Mode Clock Manager
MMU Memory Management Unit
MPSoC Multiprocessor system-on-chip
MQTT Message Queue Telemetry Transport
NBTI Negative bias temperature instability
NMT Network Map Table
NoC Network-on-Chip
OCFM On-chip Fault Management
OS Operating System
PC Program Counter
PID Process ID
PLL Phase-Locked Loop
POST Power-on Self-Test
QoS Quality of Service
RAM Random Access Memory
RM Resource Map
ROM Read-Only Memory
RSN Reconfigurable Scan Network
SBST Software-based Self-Test
SDC Silent data corruption
SDK Software Development Kit
SEE Single-event effect
SEL Single-event latch-up
SET Single-event transient
SEU Single-event upset
SFI System Fitness Index

SoC-HEALTH - Final Report List of Abbreviations ● vi

SHM Serialized Health Map
SI Scan In
SIB Segment Insertion Bit
SMBUS System Management Bus
SMP Symmetric Multi-Processing
SNMP Simple Network Management Protocol
SO Scan Out
SoC System-on-chip
SSH Secure Shell protocol and respective software
SW Software
TAM Test Access Mechanism
TAP Test Access Port
TCK Test Clock
TFI Task Fitness Index
TL Task List
TMR Triple Modular Redundancy
TNS Total Negative Slack
TRL Technology Readiness Level
TSIB Terminal SIB
VLIW Very long instruction word
WNS Worst Negative Slack
XML Extensible Markup Language

SoC-HEALTH - Final Report Table of Contents ● iv

Table of Contents

Executive Summary ... iii
List of Abbreviations ... iv

Table of Contents .. iv

1 Introduction ... 1

1.1 Background .. 2

1.2 State of the Art .. 3

1.3 The SoC-HEALTH Approach .. 5

1.4 List of SoC-HEALTH Requirements ... 6

2 The OCFM Hardware .. 9

2.1 Embedded Instrumentation .. 9

2.2 IEEE Std. 1687 Based Reconfigurable Scan Networks ... 10

2.2.1 Instrument polling versus event-triggered target instrument access 12

2.3 AFPN Extensions to IJTAG Networks ... 12

2.3.1 Extended SIB ... 12

2.3.2 AFPN flags ... 13

2.3.3 Generating and handling the AFPN flags ... 14

2.3.4 Resulting SoC-HEALTH OCFM architecture .. 15

2.3.5 Limitations imposed on IEEE Std. 1687 infrastructure to be usable in OCFM 15

2.4 Instrument Manager (IM) .. 16

2.4.1 IM operation principle .. 16

2.4.2 IM interrupts .. 17

2.4.3 IM host interface .. 18

2.5 Evaluation of the OCFM-Induced Hardware Overhead ... 19

2.5.1 The baseline system ... 19

2.5.2 The target SoC-HEALTH IJTAG RSN-based OCFM system .. 20

2.5.3 Comparison of the infrastructure resource utilization for both implementations 21

2.6 Chapter Conclusions .. 21

3 Fault Handling and Health Monitoring Software ... 22

3.1 Interaction Between HW and SW in the OCFM System .. 22

3.2 Health-Aware Scheduling .. 23

3.3 The Health Map Composition .. 26

3.3.1 Accumulation of fault event data in HM .. 27

3.3.2 HM entities ... 27

3.3.3 Safe storage of the serialized Health Map ... 28

3.4 Fault Handling Flow ... 29

3.5 Fault Management Use Cases ... 30

3.6 Chapter Conclusions .. 31

4 OCFM Performance Assessment ... 32

5 OCFM Technology Applications and Future Work... 34

5.1 The OCFM Technology Application ... 34

5.1 Adapting SoC-HEALTH Project Results to Heterogeneous Systems 35

5.2 Higher Level OCFM Functions for AI-Based Systems ... 37

6 Conclusions .. 38

SoC-HEALTH - Final Report Contents ● 1

1 Introduction

Modern complex electronics has various reliability concerns in particularly caused by aging and radi-
ation effects, which are especially pronounced in space applications due to high radiation and non-
existent serviceability. Therefore, the space electronics is normally radiation hardened, being
equipped with well-established but often costly fault tolerance1 mechanisms. Still the radiation dose
and wear out accumulating over time would eventually lead to non-tolerable permanent defects that
render the target application dead. The results of this project promise to extend the useful lifetime
of such electronics by promoting carefully planned active in-situ fault management actions.

Moreover, the space industry is increasingly seeking today for opportunities to leverage non-hard-
ened commercial off-the-shelf (COTS) electronic components, which normally offer much better
throughput at much lower cost while also providing much wider functionality scope.

It is therefore essential to manage the health of space electronics by closely monitoring the status of
hardware resources and carefully planning their utilization. This allows attaining the highest possible
performance using the remaining resources when some have already gone out of order. This is com-
monly referred to as graceful degradation. When these procedures are executed inside the system
itself, it becomes self-health aware.

Indeed, the presence of permanent defects doesn’t necessarily mean the end of life if the electronic
system is aware of its health and fitness status and thereby can cope with the reduced processing
capacity. Moreover, modern multi-core SoCs used in data processing applications provide extensive
natural redundancy that together with a smarter task scheduling provide an inherent commodity for
active health and fault management.

The project has resulted in development of a demonstrator of a fine-grain in-situ On-Chip Fault Man-
agement (OCFM) architecture and framework that acts as the backbone of the system’s self-health
awareness. The SoC Health-Awareness (SoC-HEALTH) conception relies on reuse of multitude of typ-
ical sensors and checkers already embedded deep into the hardware to measure operating parame-
ters of the target IP core, detect and correct errors before they manifest at the application software
level. Still the SoC-HEALTH project did not aim at development of any specific checkers or monitors
as plethora of such solutions is well-known to the industry1.

The self-health aware system would then use the OCFM infrastructure to collect health statistics and
maintain a so-called health map so that the OS and application software can avoid using faulty com-
ponents, thus adapting to the reduced capacity of SoC sub-modules and sub-systems (adapting to
the damage), hence keeping the mission alive as long as possible.

The key to a successful OCFM is the ability to simultaneously collect and process data from dozens
or even hundreds of on-chip sensors and checkers in real time independent of the system size and
configuration, which is not a trivial task. The SoC-HEALTH project has proven this challenge realistic

1 Space product assurance: Techniques for radiation effects mitigation in ASICs and FPGAs handbook, ESA-ESTEC
ECSS-Q-HB-60-02, European Space Agency, 2016.

SoC-HEALTH - Final Report Contents ● 2

by demonstrating the ability to simultaneously handle many hundreds of instruments on board and
even on a SoC. Moreover, the resulting HW overhead of the fault management infrastructure as well
as fault detection latency are impressively low.

1.1 Background

Self-Health Awareness as is the ability of the system to
monitor its fitness in context of its own state and the state
of the environment. The monitoring data being put into an
event-driven episodic historical perspective would then al-
low a self-aware system to maintain a dynamic self-model
that includes its fitness assessment data. Combining this
data with goal management under the target desirability
scale allows the self-aware system perform decision mak-
ing and action control in context of its actual fitness status.
The general perspective on a wider topic of system self-
awareness is given in a series of publications2 and tutorials
by A. Jantsch, N. Dutt et al.

Known approaches towards in-field monitoring and self-health awareness can be very roughly clas-
sified into the following categories.

 Pure conceptual studies still trying to define the research canvas or evaluate the existing ap-
proaches.

 Works focusing on the system-of-systems level, mainly assuming communication between
agents and the global system adaptation.

 Model based approaches looking at the system as a black box that has to exhibit a certain
behavior detect anomalies and analyze failure modes.

 Domain-specific low-level fault mitigation, quality of service, FDIR and hardening techniques.

Most of the approaches evolving today tend to abstract from the low-level fine grain data, due to
presumed overheads and complexity. Instead, a behavioral validation and model checking are used
to detect anomalous behavior and assess the system fitness. In a typical flight scenario, a software
would monitor the real trajectory and compare it against the nominal one. As soon as the system
behavior is out of the tolerance limits, the software starts corrective actions. This approach can be
compared to a mitigation of patient’s high fever by immersing him/her into a cold bath. The temper-
ature is down, but the cause of fever as well as a harmful effect of the immersion remain unknown.

In any complex electronic system, fault opportunities represent an iceberg where the modelled be-
havioral part resembles just its “visible” tip, whereas the vast “underwater” section corresponds to
the data processing units, such as microcontrollers, CPUs/GPUs, memories, FPGAs, etc. Passive fault
tolerance techniques, used today to harden electronic assemblies, allow to simply ignore the “under-
water” part of the fault opportunities iceberg, which wouldn’t work for COTS components. The SoC-

2 A. Jantsch, N. Dutt and A. M. Rahmani, "Self-Awareness in Systems on Chip- A Survey," in IEEE Design & Test: Special
Issue on Self-Awareness in SoCs, Vol 34, No. 6, 2017, pp. 8-26.

SoC-HEALTH - Final Report Contents ● 3

HEALTH project addresses exactly this issue by elaborating
the bottom-up approach towards higher levels of Health
Awareness, aiming at development a full-stack hierarchical
self-health awareness framework based on the OCFM infra-
structure that enables health/fitness data collection at the
micro level and its immediate handling at the system level.

The SoC-HEALTH framework collects and processes two types
of data: a) general fitness information for prognostics and
damage-aware task scheduling, b) error alarms for instant
fault recovery. The latter requires ultra-low-latency highly-
optimized alarm delivery and system recovery mechanisms
that have been developed in the course of project and imple-
mented both on-chip at hardware level as well as at the OS kernel level.

Today, ESA is actively stimulating research on AI-assisted FDIR. Here, an efficient cross-layer moni-
toring data collection framework reaching deepest levels of the electronic components like the OCFM
can improve the efficiency of this ML-based methods. Still, most of state-of-the-art approaches keep
focusing on the top system level. We provide a few typical examples in the next chapter.

1.2 State of the Art

Today, the topic of in-field health monitoring is gaining momentum, which wasn’t still the case, when
SoC-HEALTH project started in 2018. The core set of recent academic publications on this topic, es-
pecially those focusing on the hardware-related aspects, has originated from a few research groups.
Most of the researchers focus on development of particular checkers3 and monitors4 rather than on
higher-level health management functions and the infrastructure5 as such. Others address certain
applications, like e.g. NoC6. Several research groups picked up the ideas formulated earlier7 by us and
eventually implemented in SoC-HEALTH project. These works help to further improve8 and general-
ize9 the original concepts.

From the industrial perspective, the aerospace sector has been historically driving the fault-tolerance
and FDIR technology forward due to enormous cost of failures and strict safety regulations applied.

3 S. P. Azad, B. Niazmand, A. Kaur Sandhu, J. Raik, G. Jervan, T. Hollstein, Automated Area and Coverage Optimization
of Minimal Latency Checkers, IEEE European Test Symposium, ETS 2017.
4 H. Ebrahimi, A. Rohani, H. G Kerkhoff, "Detecting intermittent resistive faults in digital CMOS circuits," IEEE International
Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), pp. 87-90, September 2016.
5 A. Ibrahim, H.G. Kerkhoff, “Analysis and Design of an On-Chip Retargeting Engine for IEEE 1687 Networks,” in Proc,
European Test Symp. (ETS), Amsterdam, The Netherlands, May 23-26, 2016, pp. 1-6.
6 S. P. Azad, B. Niazmand, K. Janson, N. George, A. S. Oyeniran, T. Putkaradze, A. Kaur Sandhu, J. Raik, G. Jervan, R.
Ubar, T. Hollstein, From Online Fault Detection to Fault Management in NoC Routers: A Ground-up Approach, DDECS
2017.
7 A. Jutman, S. Devadze and K. Shibin, “Effective Scalable IEEE 1687 Instrumentation Network for Fault Management,”
Design & Test, IEEE, vol. 30, no. 5, pp. 26-35, 2013.
8 F. G. Zadegan , D. Nikolov, E. Larsson “A Self-Reconfiguring IEEE 1687 Network for Fault Monitoring,” in Proc, European
Test Symposium (ETS), Amsterdam, The Netherlands, 2016, pp. 1-6.
9 E. Larsson and F. Ghani Zadegan, “Accessing on-chip instruments through the life-time of systems”, Latin-American Test
Symposium (LATS), 2016.

SoC-HEALTH - Final Report Contents ● 4

Still, the range of ESA actions that contribute to at least coarse-grain health awareness technology is
currently very limited.

The so-called Standard Platform for Monitoring (SPMON2) (G617-195GI) was the most up to date
Health Management framework at ESA prior to SoC-HEALTH. SPMON is an SNMP-based system,
which retrieves health and performance attributes of managed hosts, system resources and applica-
tions such as: MCS task processes, MCS TM/TC/Admin connections, CPUs, memory, swap space, disks
file systems partitions, Network Stats, Sockets, interface traffic, pre-defined TCP connections, etc.
with respect to Mission Control Systems. According to authors, the main benefit is that it is a generic
system easily configurable to any type of mission (e.g. SWARM, Sentinel, Bepi Colombo, EXOMARS,
Euclid, etc.) and flexible enough to also monitor and control similar Data Systems (e.g. Flight Dynam-
ics Systems, ESTRACK Management System). Still the SPMON works at the system level and is not
designed to support the full cross-layer hierarchy down to SoC and microcontrollers.

There are, however, some isolated activities at ESA, targeting low-level fine-grain data collection, but
orchestration and general strategy seems to be missing. In this context, it is worth mentioning the
following two actions:

 Microcontroller Softcore for Space Applications (G617-251ED)

 Network on Chip (NoC) for many-core System on Chip in Space applications (T201-005ED) 10
The first one lists “high priority interrupt on parity error in order to signal the fault to the application”
activity as a part of the development plan. The second one, among other project activities, targets
“graceful degradation mechanisms” based on sensor data processing. None of the two projects tar-
gets the ability to simultaneously collect and process data from dozens or even hundreds of on-chip
sensors.

Another big class of activities at ESA targeting system health are called Failure Detection Isolation
and Recovery (FDIR). Most of them are performed at the software level (application), involve high-
level system modelling, and embrace the complete satellite functionality. An example activity is given
below:

 Generic AOCS/GNC techniques and design framework for Failure Detection Isolation and Re-
covery (G617-035EC).

This activity, according to authors, is contributing to mitigation of “the current lack of systematic
approach and the lack of engineering transparency and guidance of the FDIR engineering process,
with also the aim to decrease overall complexity.” It is neither focusing on SoC level fine-grain FDIR
nor addressing permanent faults or a damage handling.

A very comprehensive compendium of available classical fault-tolerance techniques (both on-chip
and off-chip), like radiation hardening at process and layout levels, redundancy (spatial, temporal,
SW), encoding, ECC and parity checking, filtering and many others is collected in ESA’s “Space product
assurance: Techniques for radiation effects mitigation in ASICs and FPGAs handbook.”11 The book,
however, does not provide any hint of extending the fault-tolerance techniques used by ESA towards
Fault Management and Health Awareness solutions.

10 Activity: Space SoC Network–on-Chip IP options study-case by Recore (NL); contract No. 4000115252.
11 Space product assurance: Techniques for radiation effects mitigation in ASICs and FPGAs handbook, ESA-ESTEC
ECSS-Q-HB-60-02, European Space Agency, 2016.

SoC-HEALTH - Final Report Contents ● 5

Apart from space applications, there are some domain-specific health-awareness and fault manage-
ment techniques like the well-known S.M.A.R.T.12 (Self-Monitoring Analysis and Reporting Technol-
ogy) developed specifically for computer hard drives, which measures temperature, spin-up time and
data error rates. Somewhat less-known is SNMP (Simple Network Management Protocol) for manag-
ing (incl. fault management) devices such as cable modems, routers, switches, servers, workstations,
printers, and more over the local area network (LAN). It operates over the LAN and does not address
the needs of lower system levels.

The Intelligent Platform Management Interface (IPMI) is a good example of an application-neutral
industrial system management technology, which is also OS-independent and uses a special System
Management Bus (SMBUS) interface as well as a dedicated "side-band" management LAN connec-
tion. IPMI, however, does not support real-time immediate reaction on faults. Neither it supports the
cross-layer data collection and handling hierarchy.

All in all, the SoC-HEALTH project is a timely action that addresses the gap in cross-layer fine-grain
systematic health data collection in SoC-based systems that takes advantage of a current technolog-
ical trend towards natural redundancy of modern multi-core data processing architectures. Among
other benefits, this redundancy enables numerous interesting low-cost alternatives to traditional ex-
pensive TMR.

1.3 The SoC-HEALTH Approach

Testonica Lab (TL) has started developing the fine-grain in-situ On-Chip Fault Management (OCFM)
concept13 for multi-core SoC devices as a system-neutral systematic approach back in 2010. The TL’s
OCFM technology represents the backbone of SoC-HEALTH approach, which extends the lifetime of
multi-core data processing and communication modules by adapting the software to run on a par-
tially broken hardware. Conceptually, the cross-layer OCFM acts as a middleware between HW check-
ers/sensors and mission applications. Theoretically, it is capable of handling both transient and per-
manent faults as well as the system's degradation and is based on the following four major compo-
nents.

Embedded monitors and sensors as well as
built-in self-test facilities and various checkers
called collectively Embedded Instrumentation
form the fundament of the framework and are
responsible for collecting service information
(whereas the reuse of fault tolerance features
is practiced). The next layer based on IEEE Std.
1687 networks appended with a special-pur-

12 ANSI X3.298-1997 AT Attachment-3 Interface (ATA-3), American National Standards Institute, Inc.
13 K. Shibin, S. Devadze, A. Jutman, M. Grabmann, R. Pricken, “Health Management for Self-Aware SoCs based on IEEE
1687 Infrastructure”, in IEEE Design & Test: Special Issue on Self-Awareness in SoCs, Vol 34, No. 6, 2017, DOI:

10.1109/MDAT.2017.2750902, pp. 27-35.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Martin%20Grabmann.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Robin%20Pricken.QT.&newsearch=true

SoC-HEALTH - Final Report Contents ● 6

pose asynchronous emergency signaling infrastructure is responsible for efficient data transportation
mainly from the instruments towards monitoring and fault management software14.

An important property of the SoC-HEALTH approach is that the data exchange is done in very rare
occasions, based on thresholds or fault detection conditions. As a result, simple mechanisms allow
to disregard the vast majority of irrelevant data. We employ a set of flags asynchronously transported
through the hierarchy of modules resulting in a carefully prioritized interruption reaching the system
software. This is used for both ensuring an emergency reaction to an uncorrected fault event as well
as routine background transportation of system health information.

Fault management software represents the third major component of the SoC-HEALTH framework.
It takes responsibility for proper reaction on interrupts, handling received information and initiating
follow-up service actions, e.g. scheduling diagnostic procedures in case of faults, scheduling tasks for
re-execution, updating health-map data15. The latter is the fourth component of the framework. It
reflects the actual status of the system marking some blocks as unusable, while holding error-occur-
rence statistics for the others.

1.4 List of SoC-HEALTH Requirements

The list of initial requirements gives a good one-stop source of the framework implementation de-
tails, its properties as well as technical challenges we’ve faced in the course of SoC-HEALTH project.

 The demonstration system shall implement at least 4 embedded processing cores capable of
running full-featured Linux operating system (OS) including system kernel, kernel tasks and
user processes (e.g. arbitrary user tasks).

 Each processing core should be supplemented with at least 125 embedded health monitors
or error checkers implemented in FPGA logic. The total number of embedded health monitors
/ error checkers should be not less than 500. The error checkers should either be capable of
detecting real faults inside processing logic and/or software or emulate fault detection.

 Fault injection mechanism should be provided capable of activating a fault condition that is
detectable by one or more error checkers. This mechanism may inject error either into the
processing logic under monitoring (preferably) or directly excite fault detection condition in-
side an error checker.

 Fault injection mechanism should be capable of simultaneously activating multiple faults de-
tectable by health monitors / fault checkers associated with at least 2 different processing
cores.

 In addition, there should be capability to periodically perform fault injection into various lo-
cations of the design.

 On-chip health sensors, error checkers and other online test instruments embedded into var-
ious parts of multi-core design should be united by a scalable health monitoring network in-
frastructure for OCFM.

14 K. Shibin, S. Devadze, A. Jutman, “Asynchronous fault detection in IEEE P1687 instrument network”, in Proc of IEEE
North Atlantic Test Workshop (NATW’2014), Binghamton, NY, USA, May 14-16, 2014.
15 K. Shibin, S. Devadze, A. Jutman, “On-line Fault Classification and Handling in IEEE1687 based Fault Management
System for Complex SoCs” in Proc. 17th IEEE Latin-American Test Symposium (LATS’2016), Foz do Iguaçu, Brazil, April

6-8, 2016, pp. 69-74.

SoC-HEALTH - Final Report Contents ● 7

 Theis OCFM network should be based on industry-approved IEEE1687 standard, hence capa-
ble of interfacing different types of checkers and sensors in a standardized way.

 The provided network should have low latency in propagation of detected fault events, locat-
ing the fault source. These latencies should be less than the time normally required by an
operating system to service hardware IRQ request.

 The online health monitoring infrastructure should allow extended interaction with error
checkers or test instruments. This ensures that checker may pass any kind of diagnostic infor-
mation in addition to reporting of fault event. In case of embedded test instrument (e.g. Built-
in Self-Test – BIST module), the network should provide access for configuring and running
different kinds of tests and fetching the test results and diagnosis.

 Flexible software sub-system for effective collection and processing of health information
coming from health monitoring infrastructure should be delivered. The software should per-
form analysis of detected alarms, classify faults and, hence, reason on overall system health
status as well as grade the health state of individual processing blocks.

 The information about health state of the multi-core processing system should be accessible
for reading by human operator (via console) or third-party autonomous system monitoring
facility (via network protocol, e.g. SNMP or IPMI).

 The developed sub-system for health information processing should be made adaptable with
respect to hardware architecture and requirements of a target platform. In particular, fault
classification and health reasoning algorithms should be easily adaptable with respect to abil-
ities of particular system to detect different kinds of faults.

 The operating system of the demonstrator should be enhanced with the mechanism that con-
siders availability and health status of processing resources while performing task scheduling.
For example, if a certain processing core is partially broken the scheduler should decide
whether a particular task may still be scheduled on this resource (e.g. depending on task’s
computational requirements, task criticality, etc.).

 The demonstrator OS should be capable of reacting to detected fault events (reported by
health monitoring infrastructure) by stopping the task(s) that were potentially affected by the
fault. The OS should automatically re-start the stopped/failed task on a newly allocated
healthy resource. In this way, the demonstrator should maintain the system operability even
on a partially damaged hardware.

 The OCFM task scheduling software should take into account the requirements of managed
tasks, such as required modules (e.g. FPU), resource reliability, etc. This information should
be given together with the executable in form of a text file (e.g. XML format). This information
should be used to decide which hardware resources could be used to run a particular task on
a partially damaged hardware.

All requirements have been successfully closed, while some of them being significantly outper-
formed. The resulting OCFM technology demonstrator developed in SoC-HEALTH project, which was
implemented on Kintex7 FPGA is based on 8-core LEON3 soft CPU running Linux OS and featuring
1262 embedded checkers embedded right inside the CPU. The data collection and emergency signal-
ing infrastructure based on hierarchical IEEE Std. 1687 compliant IJTAG network offers immediate
fault detection and diagnosis.

At the SW layer, the Linux OS runs fault-managed tasks on health-managed resources w.r.t. system
health and task requirements. The fault management system handles the faults real time by dynamic

SoC-HEALTH - Final Report Contents ● 8

task relocation and re-execution. The human operator readable telemetry interface (MQTT client)
provides a convenient way to observe the general system operation, its health as well as follow the
OCFM actions and performance.

Fault injection mechanisms and respective scenarios are available for demonstration and OCFM per-
formance evaluation purposes. Faults could be injected into different cores and resources using SSH
channel from external PC.

The SoC-HEALTH OCFM technology demonstrator corresponds to TRL 4.

SoC-HEALTH - Final Report Contents ● 9

2 The OCFM Hardware

Rapid emergence of embedded instrumentation as an industrial paradigm and adoption of respective
IEEE Std. 1687-201416 - IEEE Standard for Access and Control of Instrumentation Embedded within a
Semiconductor Device by key players of semiconductor industry opened new horizons in developing
efficient on-line health monitoring frameworks for prognostics and fault management.

The OCFM monitoring, diagnostic and fault management functions in SoC-HEALTH project are imple-
mented based on underlying IEEE Std. 1687 infrastructure and instrumentation, achieving the high-
performance operation at the cost of a reasonable overhead impact on the underlying system per-
formance and cost. Since, the approach is majorly based on the reuse of the DFT (Design for Testa-
bility) infrastructure (including IEEE Std. 1687 networks) normally implemented in semiconductor de-
vices for manufacturing testing and diagnostic purposes, the additional overhead is minimal, and it
is mainly caused by the need to protect this service infrastructure during the mission. In the course
of the project, we have demonstrated that the value of the proposed framework is especially evident
for modern high complexity devices and this value is expected to grow along with system complexity.

2.1 Embedded Instrumentation

Embedded instruments are hardware modules which are designed to be inserted into the hardware
design of an IC and perform a certain activity usually related to non-functional requirements. This
may include device testing, measurement of operating parameters like temperature and voltage,
monitoring of available slack of certain critical paths in the design, bus activity monitoring, adjust-
ment and calibration of internal parameters, setup of modules (e.g. Digital to Analog Converter
(DAC), Phase-Locked Loop (PLL)) and other applications.

In the context of fault and health management, online embedded instruments that monitor the cor-
rectness of hardware operation as well as critical parameters that may indicate the high probability
of failure happening soon are most useful. Some concurrent correctness monitors also called check-
ers are based upon the principle of continuous monitoring of hardware module’s inputs and outputs
to make sure certain logical properties are not violated. Others can detect errors in data - like Cyclic
Redundancy Check (CRC) and optionally correct them like ECC.

Another type of embedded instrumentation - parametric monitors are very useful for estimating the
"health" of hardware, prognosing and possibly avoiding a fault. They monitor essential parameters
of a circuit like temperature, voltage, delay or slack in digital paths, frequency of ring oscillators. The
values and tracked changes of these parameters may indicate aging and performance degradation
which has already occurred or will be accelerated at certain conditions.

We have implemented 1262 embedded instruments (checkers and monitors) in SoC-HEALTH tech-
nology demonstrator as follows:

 Property and assertion checkers in larger modules and automata

16 IEEE Standard for Access and Control of Instrumentation Embedded within a Semiconductor Device, IEEE Std. 1687-
2014, 2014.

SoC-HEALTH - Final Report Contents ● 10

o 1088x register checkers 136 per core, which are
o 8 checkers for global registers
o 16*8 checkers for register windows in SPARC architecture

 Watchdogs on IOs and peripherals
o 1x AHB/APB bus idle checker (per system)
o 1x simple address/value pattern checker on AHB/APB bus (per system)
o 8x push-button linked checkers activating fault signal on button press (1 per core)

 IC integrity and environmental monitors
o Temperature sensor (per system)
o 3x voltage sensors (per system)
o 32x aging sensors that are located near specific core (4 per core)

 CPU specific monitors
o 64x Program Counter (PC) idle detection (8 per core, one per pipeline stage)
o 64x PC out of range detection (8 per core, one per pipeline stage)

Embedded instruments can generate broadly two sorts of information with different properties. The
first one is emergency data about a current critical event (such as hardware fault). This type requires
very fast delivery of quite limited amount of information (e.g. an uncorrected fault has been de-
tected) because this information has the highest value during a very short period of time. The second
type is diagnostic data which has larger volume, but does not require urgent delivery (e.g. parameter
measurement data). This difference determines varying approaches to handling these types of data.

In order to address these needs and achieve performance targets, the OCFM imposes certain require-
ments onto embedded instrumentation. Firstly, instruments need to be connected to a unified access
mechanism for efficient data transfer. In SoC-HEALTH we employ IEEE Std. 1687 Reconfigurable Scan
Networks (RSNs) for this purpose. Secondly, emergency information about detected faults must
reach the fault management system as quickly as possible. This is done by introducing specific exten-
sions to the typical IJTAG commodity (which are still IEEE Std. 1687 compliant).

2.2 IEEE Std. 1687 Based Reconfigurable Scan Networks

By definition, the IEEE 1687 standard (a.k.a IJTAG) offers a methodology for accessing instrumenta-
tion embedded within a semiconductor device, without defining the instruments or their features
themselves. This methodology and access mechanism are standardized, which allows for fast adop-
tion by various vendors and interoperability between their products.

Besides fulfilling the initially intended target of regulating the external access to internal embedded
instruments, IEEE Std. 1687 access mechanism (i.e. network) can be used also to continuously handle
fault detection information as well as to manage test and system resources as a system-wide back-
ground process during the system operation. The advantage of IJTAG networks is a low overhead in
terms of chip area and relaxed routing and timing requirements between nodes due to serial and
hierarchical nature of these connections, which becomes more important in complex SoCs with large
physical die sizes. For these reasons, the IEEE 1687 standard approach was chosen as an efficient
embedded instrument access mechanism for the OCFM architecture.

SoC-HEALTH - Final Report Contents ● 11

A typical IEEE Std. 1687 instrumentation network is a serial scan chain which can be divided into
segments that are connected together in a hierarchical manner as shown on the picture. In such
hierarchical network the segments are connected in host- client (parent-child) manner where child
segments must be accessed from parent segment through Segment Insertion Bits (SIBs), which are
controllable and allow inserting the child segments into the active scan chain (see figure).

SIBs are among a few key building blocks of the OCFM as they allow manipulating the active config-
uration of the IJTAG network by dynamically including and excluding segments of the network as
required. The standard SIB has a client interface with SI and SO ports and a host interface with toSI
(to Serial Input) and fromSO (from Serial Output) ports, a scan multiplexer, and the SIB register. De-
pending on the value of the SIB register, the scan multiplexer will:

Value 0 - connect its client interface signals SI and SO together, thus skipping the child segment
- SIB is closed.
Value 1 - connect the output of child network segment fromSO to SIB’s output SO, effectively
inserting the child segment into the scan chain - SIB is open.

The IEEE Std. 1687 based RSNs provide a flexible, adjustable, efficient, and standardized instrumen-
tation polling mechanism, well-suitable for low intensity periodic monitoring or targeted communi-
cation with a particular selected instrument (preferably one at a time).

SoC-HEALTH - Final Report Contents ● 12

2.2.1 Instrument polling versus event-triggered target instrument access

When it comes to emergency data delivery, polling becomes slow and inefficient, as this involves
successive opening of hierarchical levels of the RSN until the polled instrument is reached. This, in
turn, involves several Capture, Shift, Update (CSU) cycles and a lot of bits to be shifted through the
network, which may take a considerable amount of time depending on the network configuration.

Drawbacks of polling have been known for a very long time in other domains of computer engineer-
ing. For examples, CPUs employ the system of interrupts (IRQ signals and a handler) allowing to sus-
pend the normal CPU operation to process a request from a peripheral device in real time. This saves
the CPU from having to poll the peripherals and reduces the time needed to react to an event. Similar
approach is used by OCFM to solve the issue of high fault handling latency when faults are detected
by embedded instruments: the instrument manager, instead of polling each instrument, would
simply get a direct access through the RSN to the target instrument that triggered the communica-
tion.

However, due to hierarchical and serial nature of IJTAG networks, this concept requires more than
one signal to carry the essential information as well as a method for signal propagation and aggrega-
tion which would be compatible with the hierarchical structure of IJTAG networks. As faults may be
detected asynchronously and the information about them should be propagated as quickly as possi-
ble, this method must also be asynchronous. Hence, it is called Asynchronous Fault Propagation Net-
work (AFPN).

2.3 AFPN Extensions to IJTAG Networks

In order to deliver an indication of a fault detection event as fast as possible from the embedded
instrument to the fault handler, the SoC-HEALTH approach relies on three key components: (1) the
addition of two flags which carry information about fault detection status in embedded instruments,
(2) additional hardware inside SIBs and (3) an asynchronous aggregation and propagation network
which would quickly deliver the information.

2.3.1 Extended SIB

The SIB architecture as such is not mandated by the IEEE
Std. 1687, but its typical implementation and function dis-
cussed above is widely used. The AFPN extension to IJTAG
networks adds extra features and functionality to the orig-
inal SIB. The AFPN’s SIB helps propagating emergency sig-
nals originating at the instruments that detect a fault up to
the fault handling controller and respective software.

Such an extended FCX-SIB has three additional special pur-
pose registers F, C and X and a logic, which implements the
asynchronous emergency signal propagation and readout
between hierarchical levels (segments) in IJTAG networks.
The F bit, C bit, X bit and special ports toF, toC, fromSIBF, fromSIBC are components of the AFPN used
to connect the Fault and Correction signals hierarchically between the network segments (signals

SoC-HEALTH - Final Report Contents ● 13

come from the child segment to the parent segment) and in a daisy-chain fashion within one network
segment.

2.3.2 AFPN flags

Two additional flags, implemented as binary digital signals, are added to indicate the presence of a
fault and its severity. These flags are generated by all embedded instruments and get propagated up
in the network hierarchy to the root – the IJTAG network controller. The function of the flags is de-
fined as follows:

Fault (F) flag Indicates that a fault is detected. Whenever an embedded instrument detects a fault
in the functional resource it is attached to, it sets F flag to the active state, which corresponds
to logic value "1" in the HW. Otherwise, this flag should be kept inactive at logic value "0".

Corrected (C) flag Indicates that there is no uncorrected fault. This flag is set to the active state
(logic "0") only when a fault has been detected (F flag active), but was not automatically cor-
rected or tolerated. Otherwise, this flag should be kept inactive at logic value "1".

The table below summarizes the interpretation of the flag combinations by the fault handling con-
troller – the Instrument Manager (IM).

Case Fault (F) Corrected (C) Interpretation
I 0 1 Normal operation, no fault
II 1 0 Error detected, not corrected

III 1 1
a. Error detected, but automatically corrected
b. Some other non-fault benign event happened

IV 0 0 Reserved for AFPN self-test

Although flag values are initially generated by the embedded instruments, as flags are propagated
through the AFPN to a higher level of hierarchy, they have to be aggregated to produce one compo-
site value at the root. Such aggregated value handled by the controller, therefore represents the
status of the whole IJTAG network segment. Assuming a single fault detected at a time, as soon as
any instrument sets its flag F, the aggregated root flag F has to be set to logic "1". If that fault was
also corrected, the aggregated root flag C has to be set to logic "0". Hence the general (simplified)
flag signal aggregation rules are:

Froot = F1 ∨ F2 ∨ ... ∨ Fn
Croot = C1 ∧ C2 ∧ ... ∧ Cn

Sometimes an embedded instrument can generate unwanted Fault flag values, for example when it
constantly detects a fault or becomes faulty itself. This will congest AFPN and lead to miss relevant
fault detection from other embedded instruments. Such situation could be avoided by masking (dis-
abling) the Fault and Corrected flag signals by forcing them to an inactive state. In AFPN, an additional
X bit is introduced for this purpose. The decision whether the F and C flags should be masked at a
particular FCX-SIB is taken by the fault handling software. It then gives the corresponding instruction
to the Instrument Manager which will automatically perform necessary shift operations to write an
active (logic "0") value to the X bit in that SIB.

The following figure gives a general understanding how a segment in the IJTAG network hierarchy
would look like if it is built using the AFPN-defined special-purpose infrastructure elements: FCX-SIBs,

SoC-HEALTH - Final Report Contents ● 14

fault status flags (F, C) and the aggregation network. The figure depicts one of the two aggregation
possibilities – the parallel aggregation, which offers an easier to grasp impression. Here, the aggre-
gation gates are located outside the SIBs and combine all asynchronous signals together (F and C
flags) in a given network segment at once, using one logical gate per flag. The resulting signal is then
fed to the next aggregation gate on a higher hierarchical level of the IJTAG network.

In certain cases, when the detected fault is very short-lived and an embedded instrument does not
store the fault detection state automatically, the resulting Fault and Corrected flags are set to the
respective values only for a very limited period of time. This may cause the valuable fault detection
information to be lost. In order to avoid such risk, the state of flags is latched into "sticky bits" when
a fault is detected and F flag is set to 1.

2.3.3 Generating and handling the AFPN flags

In order to make the AFPN system efficient, the instruments, which are the sources of F and C flag
signals must follow certain requirements:

 Flags are set to active state only once per one distinct event.

 When the flags are latched inside FCX-SIBs and acknowledged (by afpn_ack17), the instru-
ment must reset the corresponding signal to an inactive state even if the detected fault (or
other condition that raised the F flag) is still present. In this way, the faults will not congest
the AFPN while they will still be registered.

In order to simplify the requirements of F C flag signal generation an asynchronous acknowledge
method is used to make sure that corresponding signals are asserted by embedded instruments for
the time not longer, but also not shorter than needed. This method also helps avoiding clock domain

17 afpn_ack - asynchronously acknowledge for F and C sticky flag latching. Active state is high.

SoC-HEALTH - Final Report Contents ● 15

crossing issues, when flag generation logic inside an instrument is not clocked by IJTAG network clock
(TCK). This method works as follows:

1. An instrument detects a fault or other condition which requires attention from FM. It sets
Fault (F) flag to the active state.

2. F and C flags are propagated through AFPN and simultaneously are fed to ESIBs.
3. Due to signal propagation and resynchronization to TCK clock, some time is required before

flags are actually latched to "sticky" bits inside ESIBs.
4. When active F flag state is latched, it is acknowledged by setting afpn_ack signal to high.
5. afpn_ack signal is received by the instrument which should deassert its F and C flags in

response.
6. afpn_ack signal is deasserted in response.

2.3.4 Resulting SoC-HEALTH OCFM architecture

The fragment of the RSN that handles 1262 embedded instruments integrated into the 8-core LEON3
CPU in SoC-HEALTH is shown on the figure below. The resulting OCFM network has 4 hierarchical
domains defined by our network optimization procedure based on instrument priorities. This net-
work provides fault detection latency of 3 clock cycles (TCKs) the worst case fault localization time of
342 TCKs.

2.3.5 Limitations imposed on IEEE Std. 1687 infrastructure to be usable in OCFM

In SoC-HEALTH, we are not just adding some OCFM-specific structures to support efficient fault han-
dling, but also impose some limitations to in-field usable IJTAG networks. These limitations help to
organize the instrument access network in a regular fashion which aids in reducing fault detection

SoC-HEALTH - Final Report Contents ● 16

latency and making it more deterministic. IEEE 1687 IJTAG standard supports a great variety of pos-
sible network configurations and ways to switch the active scan chain, which is good for manufactur-
ing test, but hinders the efficiency of in-field scan chain manipulation.

The most important limitation is related to the scan chain switching, whereas the only SIB type sup-
ported is the extended FCX-SIB. More details can be looked up in SoC-HEALTH project’s technical
deliverables.

Still some RSN segments may be located outside of the scope of the in-field usable OCFM infrastruc-
ture, e.g. in the deeper levels of the network hierarchy or simply aside. Within such segments, the
networks and respective embedded instruments (for example scan-test networks used in IC produc-
tion test) can have arbitrarily complex organization. To some extent, these segments can also be used
in-field, but in this case they have to be manipulated by a dedicated software.

2.4 Instrument Manager (IM)

IM is a hardware module and a part of OCFM which controls the IJTAG network and acts as an inter-
face between the embedded instruments and the host – the Fault Manager (FM) software running
on a CPU. Whenever the
FM needs to access the
instruments to get the di-
agnostic information, it
gives a read/write com-
mand to IM which in turn
opens the path to the re-
quested instrument
through the hierarchical
IJTAG network and per-
forms the requested operation. In communication between IM and FM, embedded instruments are
referenced by a node address (row number) in the Network Map Table (NMT). In its turn, the node
address depends on the position of the instrument inside the network.

Besides the instrument access, the IM is responsible for reacting to the fault flags propagated through
the AFPN. IM can automatically open the path to an instrument which has raised the fault flag and
provide the information about that instrument’s location (node address) inside the IJTAG network.

2.4.1 IM operation principle

IM is directly connected to the IJTAG network through a standard set of serial scan and control signals
and operates as an embedded controller of the IJTAG network. No intermediate layer with JTAG TAP
controller FSM is required as it only adds unnecessary complexity and limits the flexibility of the net-
work control. IM takes care of shifting data in and out, settings control signals to needed values,
receiving or supplying data through registers to the software running on the CPU.

The IM has two basic operation modes which differ in purpose and the way the communication over
the IJTAG network is initiated:

SoC-HEALTH - Final Report Contents ● 17

Access request from the software. When the FM software needs to access an embedded instru-
ment and read or write some data into it, it instructs the IM to do this by providing the NMT
address, data (for write operation) and a command. If IM was idle, it would start executing the
requested access operation.

Fault detection. If IM is idle and the Fault flag at IM’s input becomes active (delivered from an
embedded instrument through the AFPN), IM will send an IRQ and automatically start the fault
localization procedure. This involves opening SIBs in the IJTAG network hierarchy until the
source of Fault flag is found. The NMT address of the latter is then provided to the FM software
to facilitate the fault classification.

The core logic of IM is implemented
as an FSM with 15 states (see the
respective figure). IM starts the op-
eration in IDLE state and upon a re-
quest from the host or AFPN it
moves to INIT state. In INIT state it
asserts the CaptureEn signal to
copy the actual values of the net-
work’s nodes to the shift registers.
It also resets the address counter
since the first node for which the
serial scan bits need to be gener-
ated is at address 0. Then it moves
to HUB state which is a helper state
to manage the node address han-
dling. From there, depending on
the node type located in ROM at
the current address and the re-
quested operation, it will proceed
to SIB_F, REG_W, REG_R or UP-
DATE states. SIB’s S register value
depends on whether the SIB needs
to be opened or closed for the cur-
rent retargeting goal. For registers,
IM will first shift in the first bit (IM
treats the data from host in such a
way that LSB is shifted in first) and
if there are more bits, it will stay in the loop state while there are bits to shift in or out. When the
network node closest to network’s SI is handled, FSM will reach and END entry in ROM. This means
that it should assert Update signal and check whether additional CSU operations are still needed, e.g.
if the target register hasn’t been reached yet or if the network must be closed after the access is
finished. This is decided in the UPDATE state.

2.4.2 IM interrupts

There are two types of interrupts generated by the IM to the host CPU: high and low priority ones.
The Interrupt Service Routine (ISR) software identifies the actual interrupt type and initiates respec-
tive actions:

SoC-HEALTH - Final Report Contents ● 18

High priority interrupt corresponds to fault/error detection event. In this case, ISR initiates fault
isolation to prevent possible error propagation. By default, it stops all cores to pause the task
running on a faulty core, when an unrecovered fault has been detected by an instrument. After
the location of the faulty resource becomes known, the healthy cores are released and can
continue their operation.

Low priority interrupt is invoked when IM has finished the localization procedure or wants to
transfer other information to the FM driver. In case of the localization procedure, the ISR may
add an entry to the HM and call the fault classification procedure to interpret the information
received from IM and update the system health status. The affected processes are rescheduled
if required.

The IRQ’s actual type can be determined by reading specific IRQ status register bits. At least one of
them must be set to 1 if an interrupt is triggered. The fault detection bit corresponds to the high
priority interrupt type, while others to the low priority type. In case two IRQ lines are not available in
the system all requests could be combined into one line with the disadvantage of slightly longer re-
sponse time to critical events.

IM uses a special watchdog that monitors the ability of the system to respond to the fault occurrence
event. The system reaction to the IRQ may be missing due to specific faults in the CPU HW or in the
OS SW.

2.4.3 IM host interface

On the host side, IM is treated as a peripheral and requires several 32-bit registers for controlling its
operation. The list of registers accessible from software (FM kernel module) is given below:

IM command/status register Host writes to this register to control the behavior and start the
operations in the IM and IJTAG network. Host reads this register to get the current status of IM.

IRQ control/status register Allows to enable, disable and read the status of different interrupt
sources: fault detection, fault localization, instrument data register read/write operation com-
pletion.

Data register Stores the data which has to be written to or read from an embedded instrument
through the IJTAG network. At least one data register is required and it supports read/write
operations to data scan registers up to 32 bits in length. In case larger scan registers need to be
supported, several 32-bit interface data registers could be used in concatenation.

SoC-HEALTH - Final Report Contents ● 19

In the simplest case, IM registers can be mapped to the memory address space of the host CPU by
means of a bus (e.g. using an Advanced Peripheral Bus (APB) wrapper). In our case, two 32-bit regis-
ters are used for total of maximum 64-bit data access operations, but this number can be customized
for support of larger IJTAG scan registers of the instruments.

Offset Register description
0x00 Instrument Manager command/status (IMCS)
0x04 IRQ control/status

0x08 Data, lower 32 bits

0x10 Data, upper 32 bits

2.5 Evaluation of the OCFM-Induced Hardware Overhead

SoC-HEALTH activity integrates the OCFM architecture into an 8-core implementation of LEON3
softcore CPU on Kintex7 KC705 FPGA Evaluation Platform with XC7K325TFFG900-2 FPGA device. In
order to assess the overhead introduced by the OCFM infrastructure one can either compare the
health-aware version of the base system against the initial “pure” non-hardened version of the CPU
or with a version that has checkers and monitors already part of the system. The SoC-HEALTH project
follows the latter scenario as it targets the evaluation of the data collection framework itself, i.e.
provided that we have some instrumentation to detect faults and measure system parameters, there
must be some data collection mechanism in place to compare to. Moreover, we want to establish
some new practical reference point in terms of HW overhead and fault detection latency so that
other researchers could evaluate their new results against a practical baseline, which is now offered
by the OCFM architecture developed in frames of SoC-HEALTH project.

Therefore, besides the target IJTAG RSN-based OCFM, we have also implemented a simple memory-
mapped access mechanism, which becomes the initial baseline system for the SoC-HEALTH project.
As a result, we were able to compare the OCFM hardware utilization for both versions. The results
show that the overhead mainly consists of flip-flops (FF) required for scan-chains and that it is not
high: just 8.86% of all FFs in the target FPGA. Both designs have been successfully implemented in
the target FPGA.

2.5.1 The baseline system

The health data collection framework in the baseline system uses a trivial memory-mapping infra-
structure (memory controller, debug port, etc.) as well as exactly the same set of embedded instru-
ments as it is in the final system, all of them having the same unified interface to the diagnostic

CPU

8x LEON3
APB

Simple memory-
mapped I/O

adapter

Embedded
instruments

Diag.
interfaces

Embedded
instruments

Embedded
instruments

Embedded instrument access infrastructure in the baseline system

SoC-HEALTH - Final Report Contents ● 20

system. All the instruments are accessed by the host (LEON3 CPU) through a memory-mapped APB
peripheral which aggregates diagnostic interfaces of all embedded instruments. This access infra-
structure is highlighted in yellow.

The setup and hold timing summaries below show that the design was successfully placed and routed
while respecting given timing requirements.

2.5.2 The target SoC-HEALTH IJTAG RSN-based OCFM system

The SoC-HEALTH IJTAG-based target OCFM replaces the baseline/reference embedded instrument
access peripheral with a combination of the IJTAG RSN and the IM (highlighted in yellow).

Due to the nature of IJTAG networks, somewhat more hardware resources (flip-flops in scan chains,
interconnection) is used per each accessed bit of diagnostic interface of an embedded instrument.
Therefore, resource utilization of the IJTAG-based access infrastructure is higher.

CPU

8x LEON3
APB

Instrument
Manager

(IM)

Embedded
instruments

Diag.
interfaces

Embedded
instruments

Embedded
instruments

SoC-HEALTH OCFM instrument access infrastructure based on IJTAG

IJTAG
network

IJTAG

Post-implementation
FPGA resource utili-
zation of the IJTAG-
based OCFM system

SoC-HEALTH - Final Report Contents ● 21

2.5.3 Comparison of the infrastructure resource utilization for both implementations

In order to evaluate the overhead of the IJTAG-based OCFM infrastructure w.r.t to the baseline, re-
source utilization of both versions of the access infrastructure was first extracted in Xilinx Vivado
software. The following table provides the utilization data (absolute and percentage of total FPGA
resources) in absolute numbers (columns 2 and 3) and the percentage of total FPGA resources (col-
umns 4 and 5). The data only reflects the access infrastructure part of the design only (highlighted
with yellow in figures above). The last column shows the difference between the target and the base-
line system. The calculated difference shows that resource utilization overhead of IJTAG-based access
infrastructure mainly consists of extra required flip-flops, which can be attributed to flip-flops in scan
chains which are the main component of any IJTAG network.

Resource
type

Baseline
Utilization

OCFM
Utilization

Baseline
% of FPGA

OCFM
% of FPGA

Difference
wrt. baseline

LUT 21522 22089 10.56% 10.84% 0.28%, rel. +2.65%

LUTRAM 0 1 0% <0.01% <0.01%

FF 0 36136 0% 8.87% 8.87%

BRAM 0 0 0% 0% 0%

BUFG 0 0 0% 0% 0%

PLL 0 0 0% 0% 0%

2.6 Chapter Conclusions

The OCFM infrastructure is the key component of the SoC-HEALTH hardware that provides flexible
access to embedded instruments via IJTAG-based reconfigurable scan network (RSN). This allows for
fast, efficient, and scalable communication with embedded instruments. Inevitably, it occupies some
hardware resources. The results show that IJTAG-based OCFM introduces insignificant overhead in
area and no impact on functional performance compared to the baseline system.

Since the fault handling is performed at higher system levels, the hardware must provide an efficient
way to read and write data to the embedded instruments, as well as provide a notification about
detected fault as fast as possible. All these functions are implemented in an FSM-based IJTAG net-
work controller called Instrument Manager. It can receive and forward AFPN signals and automati-
cally localize the source of fault signal in the RSN hierarchy. This offloads the OS by shifting these
operations from software to hardware and therefore reduces fault localization and fault handling
latency.

SoC-HEALTH - Final Report Contents ● 22

3 Fault Handling and Health Monitoring Software

This section provides an overview on how the OCFM system collects, stores, analyzes health data and
performs the Fault Detection, Isolation and Recovery (FDIR) functions. Besides the embedded instru-
ments in hardware, the health data collection can also use additional data sources, like BIST embed-
ded into a functional resource or a software test procedure (e.g. SBST). Based on the acquired infor-
mation, it can also execute additional diagnostic procedures for a fine-grained localization and clas-
sification of faults.

The OCFM is intended to work with such an OS where the scheduler could be modified to take ad-
vantage of the information provided by the fault management system and implement a health-aware
or damage-aware task scheduling.

3.1 Interaction Between HW and SW in the OCFM System

While a fault could be timely detected
in hardware by embedded instruments
and passively tolerated by hardening
and mitigation techniques (e.g. ECC,
TMR), it can’t be actively handled or
processed in-situ. The SoC-HEALTH
technology targets this aspect by ena-
bling immediate passing of the emer-
gency data from the HW embedded in-
struments to where this data could be
used and interpreted – the Fault Man-
ager (FM) software and the OS so that
the latter could reschedule the af-
fected (failed) task immediately to an-
other available resource. After detect-
ing the fault, this event has to be diag-
nosed and analyzed by the software in
order to update the system Health
Map (HM) and isolate the resource in
case of permanent fault detection.

The OCFM core parts – FM and IM are
closely coupled to the functional part
of the system: FM is a service software
that maintains the Health and Re-
source Maps and exchanges data with
IM which has to be implemented as a
dedicated hardware. Besides regular
instrument access requests from the

SoC-HEALTH - Final Report Contents ● 23

software, IM is responsible for reacting to the fault flags set by the instruments and propagated as
an asynchronous emergency signal. IM automatically opens the path to the instrument that raised
the fault flag and provides the information about its location to the software. However, IM can only
provide a coarse-grain fault diagnosis in this manner (down to the core affected). It is the task of the
FM to handle the fault, perform its classification and optionally find out the location of the fault as
precisely as possible. The respective information like the fault class and its occurrence statistics are
reflected in the HM. If the resource usability is compromised, the FM must also update the Resource
Map (RM), which is the basis of health-aware scheduling. The SW functions also include processing
the application requirements, matching them to available resources and interfacing the OS sched-
uler.

3.2 Health-Aware Scheduling

The health management software that is a part of the OS (as a kernel module) is the core of OCFM
architecture as it is responsible for maintaining Health and Resource Maps, performing fault classifi-
cation, and communicating with IM hardware. This kernel module includes several key components:

Instrument Manager driver responsible for communication with the IM HW and providing corre-
sponding Interrupt Service Routine (ISR).

Health map (HM) is a linked list data structure that is central to the architecture and holds the de-
tailed information about the system’s functional and diagnostic resources (embedded instruments)
as well as data about faults that have occurred previously. The HM maintains the statistics of fault
occurrences to enable reliability prediction capability (prognostics). Since hardware faults may not
disappear after system restart, HM also should not be lost. HM should be stored in a reliable non-
volatile memory to maintain the prediction capability across power cycles. To facilitate that HM struc-
ture is organized in a way that is easy to serialize for storage and where new fault detection entries
are always appended to the end of the occupied memory.

Fault classification is
important for fault
and resource man-
agement as well as ef-
fective system recov-
ery. Faults are classi-
fied according to
their severity levels
and their contribu-
tion to the perma-
nent malfunction of
system’s components and modules. In OCFM, certain properties are assigned to the faults (persis-
tence, severity, criticality, diagnostic granularity and location).

Resource map is a data structure in the system memory that holds the information about the cur-
rently available (healthy) resources of the system. It is updated on the fly during the system’s normal

SoC-HEALTH - Final Report Contents ● 24

operation, should a fault be detected by an instrument or a diagnostic routine. FM updates the re-
source map based on the fault classification data. This enables health-aware scheduling based on the
current health status of each module:

 Available: the module is available, no faults registered.

 Own fault: the module might have limited functionality due to a fault detected in it.

 Propagated fault: limited functionality due to a fault detected in child modules.

 Maintenance: the module is not available due to ongoing maintenance (BIST, SBST etc).

Task scheduling is performed by an OS scheduler that takes into account the information from the
Resource Map (RM) when assigning tasks to resources that are healthy enough to run these tasks.
RM relies of the following information:

 sub-resource availability (e.g., Floating Point Unit (FPU) inside a CPU),

 information in the task descriptor,

 reliability of the resource based on the fault statistics, and

 mission-criticality of the task.

Core Map provides mapping of the cores described as system modules to actual core IDs understood
by the OS. In multi-core systems, several cores can execute several programs in parallel and each of
the latter is assigned to a certain processing core ID. The assignment of core IDs to actual physical
processing cores is performed by the OS. There are many possible configurations of processing cores
and therefore, their enumeration in the SoC. In case of a traditional Symmetric Multi-Processing
(SMP) system, all cores are identical and equivalent in function and are enumerated in hardware. In
more complex cases, like Asymmetric Multi-Processing (AMP) systems, the core ID enumeration may
be more complicated.

Task List is a data structure which keeps the list of all fault-managed tasks with their process IDs
(PIDs), task requirements (an array of requirements in binary form) and CPU affinity masks (Binary
bitfield that encodes CPU cores allowed to run a given task). This data is constantly compared to
current hardware resource availability in the RM by the FM LKM, therefore relevant information
needs to be kept inside the LKM memory during runtime.

Task Requirements is an array of resource requirements that describe the necessary hardware re-
sources needed to run that task. In addition to the type and quantity of resources, task requirements
can define minimum health status of a functional resource, by means of the worst acceptable fault
class present in the resource. These requirements are the cornerstone of the health-aware schedul-
ing. For example, if it is known that a task requires a specific CPU core feature (e.g., FPU), then it
should not be scheduled to a core that lacks this functionality (e.g., due to a permanent fault). These
dependencies are stored in an XML-format task descriptor file that contains the information about
task’s resource requirements. Then for each task, based on a snapshot of HM, the following task
requirement evaluation procedure is executed (yielding the CAM for that task):

1. Verify that the resources of the system are sufficient to run the task and their health require-
ments are met.

2. Calculate the Core Affinity Mask (CAM) that shows which CPU cores can be picked to execute
the task.

3. Calculate Task Fitness Index (TFI) that shows how redundant the avail- able resources are for
the task.

SoC-HEALTH - Final Report Contents ● 25

In case of Linux, for each running process it is possible to set an affinity mask that defines which CPU
cores can be used to execute a given process. This mask can be set and read using the following
system calls:

sched_setaffinity(pid, *mask) – sets the affinity mask for a given task
sched_getaffinity(pid, *mask) – returns the affinity mask for a given task

Using these system calls, OCFM LKM can forbid execution of certain task(s) on certain cores if a fault
was detected in the respective hardware. It should be noted that default Linux scheduler has certain
limitation in the context of OCFM purposes. It will move tasks from one core to another according
to the given CAM, but it will not do it immediately by stopping the task as soon as an updated CAM
is received. This will limit the reaction speed of fault handling procedure. In order to overcome this
limitation, the default scheduler must be modified, or a new scheduler can be designed.

Fitness Indexes. The OCFM presumes that there is in general some redundancy in terms of used
resources. In order to estimate the "fitness" i.e. how far the system and each particular task are from
failing to function due to the lack of resources, the OCFM calculates corresponding metrics or indices:
System Fitness Index (SFI) and Task Fitness Index (TFI). When the fitness index is 1, there is exactly as
many resources available as it is needed for the function of a task or the system. Higher fitness index
values show that there is some redundancy available, and some functional resources can still fail
without compromising the functionality. Fitness indices are calculated based on the "redundancy ra-
tio" of top-level system resources needed to execute the tasks, such as CPU cores. If a certain task
requires just 2 cores to run while there are 8 cores allowed to execute this task, then the "redundancy
ratio" and the TFI of this task is 4. If there are other top-level resources (e.g. communication interface)
required, then TFI is equal to the lowest "redundancy ratio" among all required top-level resources.
It is important to track the lowest TFI value among all running tasks because it shows which task has
the least amount of available resource redundancy, and how much of it. When the TFI reaches 1 for
some task, a significant fault in respective resources will lead to inability to run this task and, there-
fore, a system failure. SFI, is in its turn calculated as the average of TFI values of all fault-managed
tasks. SFI does not correlate with current system load or performance, it shows the average redun-
dancy of system resources w.r.t. currently running tasks.

User Command Line Interface (CLI) provides a way to control the kernel module from a user-space
client program. Although FM Loadable Kernel Module (LKM) is normally working without the user
intervention or control, in some cases there may be a need for to inspect system’s health status or
control the FM operation. The CLI application is a user space application. It expects that the system
is properly booted, and FM LKM is installed and running. This software uses driver interface to send
user commands to the kernel module. It allows the user to get the HM snapshots from the FM kernel
module, see faults saved in HM; list, add and remove fault-managed tasks.

The health-aware task scheduling is then performed by an augmented or modified OS scheduler
which takes into account the information from the Resource Map (RM) selecting the resources to be
used for task execution based on 1) sub-resource availability (e.g. FPU inside a CPU), 2) task require-
ments, 3) reliability of the resource itself based on the fault statistics. The task requirements file
contains the information about resource requirements for the task execution. This is represented by
a description of the required set resource types, optionally with some reliability or environmental
requirements.

SoC-HEALTH - Final Report Contents ● 26

3.3 The Health Map Composition

Raw data which is collected from embedded instruments is in most cases not immediately usable nor
useful. Often it needs to be put into a context of previous events. A fault detected once is difficult to
classify into classes like e.g. transient, intermittent or permanent, or in other words the persistence
of this fault. When the same fault starts to appear periodically it is already a sign of degradation and
it’s then necessary to measure the frequency of fault appearance. For such a purpose, the OCFM
maintains a centralized database, called the Health Map, which holds the information about func-
tional resources, occurring faults and the relationship between those two. Moreover, HM preserves
the statistics of fault occurrences in a resource, which can be then used for estimating which of the
processor cores is currently more stable than the others in order to pick it for the most critical tasks.

The Health Map is a collection of data structures that represent different types of entities. The con-
nections between different types represent their actual relationships (e.g. a fault detected in a func-
tional resource). An array of similar entities is organized as a linked list. The figure shows a simple
example of a HM with different entities: CPU cores with an FPU, faults and fault detection events.
The upper part in the figure shows the relationship between different data structures (tables with
different background colors), the structure members together with data types and example values.
The lower part (the row) shows the memory layout of these data structures.

SoC-HEALTH - Final Report Contents ● 27

3.3.1 Accumulation of fault event data in HM

When the system is fresh, it is considered fault-free. Hence, an initial "clean" HM generated from the
module’s XML description is used. It would only contain data structures for the functional modules
and respective diagnostic resources. It may also contain dependencies. During the system’s lifetime,
faults may occur and if detected by OCFM, would trigger creation in the HM new data structures
dedicated to faults, their classification and occurrences.

3.3.2 HM entities

Functional hardware resources (modules) e.g. CPU cores, their sub- modules like FPU, shared re-
sources like buses and so on represent a large group of entities. All sibling modules are organized
into a linked list, while each module can also have submodules in order to represent actual hardware
organization. Each module also has a type, a set of associated diagnostic resources (e.g. embedded
instruments), a list of detected faults and several other fields in the data structure used to store
information about the module.

Diagnostic resources are various embedded instruments that supply diagnostic information about
system health and fault events. Other types of diagnostic resources, like e.g. SBST, BIST, or system
watchdogs are also supported. Diagnostic resources always belong to a certain functional hardware
resource. This relationship and other properties of diagnostic resources are stored in the HM.

User interface for the remote
telemetry data monitoring

SoC-HEALTH - Final Report Contents ● 28

Faults and their classification status are reflected in the respective HM structure. As system modules
accumulate faults during the lifetime, all relevant data is being captured and stored permanently in
the HM. This ensures that faults, their occurrence patterns, and other meta-data can be analyzed and
extracted at any time later.

Fault detections. The same instrument may detect a fault several times and potentially with different
properties. In HM fault detections are always associated to particular faults and have numerous pa-
rameters. In the event of fault, software creates or updates a fault detection record to keep the de-
tails of the event. In case of subsequent identical fault events that land into predefined time period
(e.g. 10 milliseconds) the system increments the fault detection counter.

Functional dependencies. In some cases, i.e. when correct functionality of one module depends on
operation of another module in a system, such a relationship between functional modules (system
resources) needs to be stored in the HM. It can be a peripheral connected to a certain bus: e.g. when
AHB or its part fails, the Ethernet (a peripheral) may become inaccessible and hence unusable. In

order to keep track of the effect of faults towards other modules, a special data structure in HM
provides a link to a dependent resource and the strength of that dependency.

3.3.3 Safe storage of the serialized Health Map

The Health Map is intended to contain the information about the status of all system’s resources and
since faults are occurring in hardware and do not disappear after system restart, HM also should not
be lost. To retain the information about the known faults in the system when the system is powered
off, HM should be stored in a reliable non-volatile memory to maintain the prediction capability
across the power cycles. However, the access to the memory is performed by FM which is executed
as a part of the OS kernel. To help protect the contents of this memory in general, as well as from an
error-prone behavior of the OS, HM memory itself should not be directly accessible, but rather a
special error-tolerant controller should be employed to control the access to the memory, which
either could be a binary file or an EEPROM.

HM software is capable of serializing system map objects. Serialized Health Map (SHM) occupies sub-
sequent uninterrupted memory region. This allows to incrementally update the saved safe version of
the SHM as well as unroll it into manipulatable data structures when reading it back into the RAM.

SHM has specific layout in memory that facilitates (de-)serialization and updating with new fault in-
formation. It is largely divided into two parts. In the predefined (constant) part, the header and in-
formation about system’s resources have to be prepared once at hardware design stage. This part
would be the same for all systems with identical hardware. Updated (dynamic) part contains data

SoC-HEALTH - Final Report Contents ● 29

about faults occurred throughout the system lifetime. This data is unique for each individual physical
system. HM is designed in such a way that new data structures are appended to the end of HM. This
allows to store SHM in a continuous memory.

All memory offsets (shown as blue arrows above the layout structure) are stored as absolute byte
offsets using the beginning of HM as the base address. This ensures easy relocation of the HM (at any
address in RAM, in a regular file, in an EEPROM, etc.) because the offset values do not depend on the
type of the memory used.

3.4 Fault Handling Flow

When a fault occurs in a complex SoC working under the control of an OS, it is necessary that the
latter becomes aware of the fault as quickly as possible. The OS must then take actions to isolate and
mitigate the effects of the fault. In OCFM, the fault event is processed by four actors: Instrument,
Instrument Manager, Fault Manager and the OS (see the figure).

Fault detection. Whenever a fault is detected by an instrument, the information about this event is
quickly passed to the IM through AFPN. In response, IM sends an interrupt request to a CPU which is
executing the OS kernel, which, in turn invokes the FM to service this interrupt. Since the nature of
the fault is not known at this stage yet, the FM software executes necessary procedures in order to
isolate the fault and contain possible error propagation.

Fault localization. Concurrently with sending the interrupt request, the IM starts the instrument lo-
calization procedure. During this procedure, the IM will subsequently open those hierarchical IJTAG
network segments with the Fault flag set. As soon as the instrument, which has raised the flag has
been reached, the IM reports the location of the fault expressed as the position in the IJTAG network.

SoC-HEALTH - Final Report Contents ● 30

Coarse-grained fault classification. Based on the information about which instrument has raised the
Fault flag, the FM can perform coarse classification of the fault. Since the detailed diagnostic infor-
mation about the fault is not available at this time, the diagnostic granularity is limited by the granu-
larity of the instrument location (e.g. it is attached to a CPU or FPU, or some particular checker).
However, in some cases the criticality of the resource can be determined by the type of affected
system resource. In any case, the Health and Resource Maps are updated accordingly.

System response. Based on the information derived in the previous step, the OS may need to take
actions to mitigate the effects of the fault on the functional operation of the system. The fault can
be ignored if it does not affect the operation, or the task was not a critical one. Alternatively, the task
can be rescheduled to another resource or re-executed on the same one later. When the required
actions are taken, CPU cores are released.

Diagnosis. Depending on the outcome of the coarse classification step, the FM system may decide to
get more detailed diagnostic information by executing a diagnostic procedure. The IJTAG network is
used to communicate with instruments (such as BIST or other DfT hardware) to fetch additional in-
formation about the fault event. This communication channel is managed by the IM.

Fine-grained fault classification. The diagnostic procedure updates the FM with the new information
used to perform the fine fault classification and update both Health and Resource Maps.

3.5 Fault Management Use Cases

Below are several use case examples involving health-aware scheduling and reaction on fault events.

Task start. Whenever a new fault-managed task must be started, user-space FM CLI utility will send
the information about the task and its requirements to FM LKM. The latter will then add this task to
TL, evaluate the requirements and return the result to the user space.

Task ended. Task’s entry must be removed from the TL as soon as the task has ended. The task may
finish normally or can be terminated prematurely externally.

Task deleted. A running fault-managed task can be deleted from the FM CLI by the user. The CLI will
terminate this task and send a message to FM LKM to remove the task from the TL.

New fault event. Whenever a new fault is classified and added to the HM, as a result, the RM is
updated. After that, the requirement evaluation procedure should be run for the affected tasks. In
order to avoid unnecessary calculations, a simple optimization is applied: in case new fault detection
affected a module or submodule of a CPU core, only tasks which have that core allowed in their
affinity mask should have their requirements re-evaluated.

Resource Map update. As a result of the RM update, CAMs of the tasks can:

 Remain unchanged. The fault did not significantly affect the resources required by the task
and there were no changes in the set of cores that can run the task. According to the task
requirements, task may need to be re-executed.

SoC-HEALTH - Final Report Contents ● 31

 Change. The set of cores which are allowed to run the task has changed and the new task
CAM must be sent to OS scheduler. According to the task requirements, task may need to be
re-executed or re-scheduled.

 Deplete. There are no more cores left allowed to run the task and the latter must be termi-
nated by the FM LKM.

3.6 Chapter Conclusions

In the SoC-HEALTH OCFM concept, the fault management software has two important functions: the
health-aware task scheduling (slow-paced activity) and the immediate fault handling (fast emergency
activity) with subsequent task recovery. Both functions fully rely on the underlying OCFM hardware
described in the previous chapter.

In order to perform these two key functions, the OCFM SW also maintains specific data structures
reflecting the underlying system architecture, location of diagnostic instrumentation, system health
information, fitness status, etc. as well as it implements a number of data processing functions, such
as fault localization and classification, health map and resource map updating, system fitness calcu-
lation, servicing IRQs from the IM and many others.

In SoC-HEALTH project we aimed at minimum intrusion into the Linux OS, being actually able to mas-
ter available resources, implementing the health-aware scheduling based on the original unmodified
Linux scheduler. It is possible using system call sched_setaffinity()that allows to explicitly de-
fine a subset of cores that should be used to execute a certain process. Therefore, in this setup, the
Resource Map exists in an implicit form of the CPU affinity information that is provided by FM to
Linux scheduler.

The key fault management tasks are carried out by specially developed FM software in the form of a
loadable kernel module, which is the central part of the architecture. The list of managed processes
is stored in the kernel module, it contains process identifiers, and the associated record of resources
(modules/submodules) needed for execution of each managed process. With the information from
the process list and HM, the system is always aware of how to schedule the tasks to available re-
sources.

SoC-HEALTH - Final Report Contents ● 32

4 OCFM Performance Assessment
This chapter presents a performance assessment of the implemented OCFM in terms of system re-
action latency. Critical latency parameters were measured: fault detection and localization, software
response to interrupts and fault handling time. The results show that the reaction latency of the
OCFM system in SoC-HEALTH FPGA based demonstrator is dominated by the software part including
the OS and interrupt handling. The overall fault handling latency is in the order of 10-3s.

In order to evaluate the performance of this system, we have conducted a measurement of reaction
times of the solution proposed for this case study to find out how fast the system can react to an
unrecovered fault. For the
experiment, fault in one of
the CPUs was emulated in a
controlled manner, by
injecting a fault into differ-
ent instruments (one at a
time). We measured the
time required for different
stages of the system’s reac-
tion to this fault on the real
hardware.

Several timing parameters were measured using logic analyzer embedded into the hardware. The
measurement time starts when the Fault flag is raised, and it is denoted by tF. The following meas-
urements were made for respective fault handling stages:

a) Fault detection latency (in HW) - the time needed for the Instrument Manager (IM) to raise
high priority interrupt (tdet – tF).

b) Fault localization latency (in HW) - the time needed for the IM to automatically localize the
instrument which has raised the F flag and raise the low Interrupt Request (IRQ) (tloc – tF).

c) OS interrupt latency - the time needed for the OS to react to high priority interrupt and stop
the CPU cores to isolate the fault (tiso – tdet).

d) Localization and classification latency - the time needed for the FM kernel module to handle
the fault (localize and coarsely classify) and resume the execution (thandl – thalt).

e) Total fault handling time – from fault occurrence to resumed operation (thandl – tF).

Measurement Time, µs Time, clock cycles
a) Fault detection latency const 0.074 3
b) Fault localization latency min–max 0.97–8.42 37–342

c) OS interrupt latency
min–max

average µc
std.dev. σc

38.45–52.75
47.39
3.62

d) Localization and classification latency (µe – µc – a) average µd 5156

e) Total fault handling time
min–max

average µe
std.dev. σe

4922–5800
5203
213

Fault detection, isolation, and handling latency timeline

SoC-HEALTH - Final Report Contents ● 33

CPU cores were running at 81.25 MHz while IM and IJTAG network at half that frequency. Since the
interrupt latency of standard Linux kernel is nondeterministic and can vary from run to run, the re-
sults of the third and fourth stages are averaged over 10 runs. The measurements are given in the
table above that shows fault detection latencies for every stage in TCK cycles and microseconds
(FTCK=40.625MHz).

SoC-HEALTH - Final Report Contents ● 34

5 OCFM Technology Applications and Future Work

The European Space Technology Harmonization roadmap addresses the continuous miniaturization
and speed/power optimization for the microelectronics by a number of ongoing activities, which will
collectively produce an enabling ecosystem for European high-performance on-board computing. To-
day, space missions, especially those serving telecommunication and Earth observation purposes are
in need for more processing power. According to the Technical Dossier on Microelectronics: ASIC and
FPGA18, the ESA has a strategic interest in minimizing the dependency on export restrictions, while
improving the competitiveness, availability and performance of European space ASIC and FPGA tech-
nology, which is always needed at the very heart of all space avionics. Today, the key strategic chal-
lenge for Europe is to make advances in the performance and functional capabilities of European
satellites (e.g. deep sub-micron (DSM) ASIC for next generation telecom payloads), while achieving
high levels of miniaturization and speed/power optimization for the microelectronics. These drives
future developments in the domain of microprocessors, FPGAs and ASICs (both standard and propri-
etary) to address the increase of processing needs in terms of throughput, bandwidth, and perfor-
mance of platform and payload equipment, while still decreasing power, size, and cost.

The Eurospace RDT Priorities19 consolidates emerging needs of the European space industry with
regard to research development and technology. In the domain of EEE components and electronics
building blocks Eurospace sees high speed processing for intensive image and data processing as a
key area for action, including activities such as new DSPs, co-processing, and DSM multi-core proces-
sors.

5.1 The OCFM Technology Application

The OCFM technology follows these trends by exploring the natural redundancy of the multi-core
devices for health-aware task scheduling purposes. Acting as a middleware between HW check-
ers/sensors and mission applications, the OCFM thus naturally enables Health Awareness functions,
valorizing thereby the developments of next generation multi-core processors both in the space in-
dustry but also in the terrestrial economy, especially in the domains that require high availability.

The first-priority target customers for the OCFM technology are the companies producing high-cost
electronic equipment for mission-critical systems (e.g. automotive, aerospace, and health-care) or
systems targeted for long-term continuous operation (telecom). For instance, the Advanced Driver
Assistance Systems (ADAS) are expected to revolutionize the automotive market, elevating the de-
mand for highly-reliable electronics, including sensors and processing power. The growth of com-
bined ADAS and automotive safety systems market is expected to create a demand towards system
health monitoring and fault management solutions like the OCFM developed in frames of the SoC-
HEALTH.

18 Technical Dossier on Microelectronics: ASIC and FPGA; ESA/IPC/THAG(2016)
19 Eurospace (2016); Space RDT priorities 2020: the incremental roadmap of technology research and development activi-
ties for space; https://eurospace.org/wp-content/uploads/2018/05/eurospace-rdt_2020_web.pdf

SoC-HEALTH - Final Report Contents ● 35

The OCFM health management system and respective methodology is highly flexible and adaptable
to a very broad range of target applications across market segments. The software can be plugged-
into an existing operating system without kernel modification and the health management functions
can be easily switched on and off on the fly, which simplifies its adoption and safety certification.

5.1 Adapting SoC-HEALTH Project Results to Heterogeneous Systems

In the near-term, we foresee the application of SoC-HEALTH project results by adaptation of the
OCFM framework for systems like the High-Performance Computing Board (HPCB), which is now be-
ing developed at ESA as a primary data processing platform for space satellites. The HPCB platform
represents a heterogeneous system comprising of the central controller, communication module,
computation units, and combines such diverse components like MCUs, FPGAs and application-spe-
cific accelerators.

The health monitoring architecture in heterogeneous systems can be implemented within a single
SoC or span across several hierarchical levels, especially in a large complex system where many de-
vices are connected to each other on one or several boards. The figure shows an abstract example of

SoC-HEALTH - Final Report Contents ● 36

such relationships between hierarchical levels in a complex system and respective devices where it
could be implemented. Depending on the level of hierarchy and the purpose of a device, they can
contain execution units and/or local health management controllers or board/system level control-
lers. These devices fall into several classes that have to be considered in health management archi-
tecture:

 FPGA with user IP cores, e.g. Kintex UltraScale, etc

 CPU application cores, e.g. Zynq-7000 / UltraScale+ Cortex-A, NXP Layerscape LS1046A

 CPU protected cores (TMR or lock-step execution), e.g. ZynqUS+ Cortex-R, TMR uBlaze

 Board/system level controllers, e.g. GR716

The following table lists the roles of these device classes in the health management architecture.

 FPGA fabric with
user IP cores

CPU application cores CPU protected cores
(TMR, lock-step execution)

Board/system controller

Examples - Any FPGA - Cortex-A9 (Zynq7000)
- Cortex-A53 (Zynq-US+)
- Soft cores (Microblaze,

RISC-V etc)

- Cortex-R5 cores in Zynq-
US+

- TMR Microblaze

- GR716 Protected MCU

Monitoring - Embedded instru-
ments and sensors

- Debug/fault registers
- Performance monitors
- Interrupts
- Temporal redundancy
- BIST

- Fault registers
- BIST

- On-board sensors
- Aggregated health data from

other devices lower in the hi-
erarchy

Active con-
trol in case
of faults

- IP-specific controls
- Reconfiguration

- Task scheduling accord-
ing to hardware resource
health

- Task re-execution or re-
scheduling

- Restart
- Disable access to faulty re-

source

- System reboot
- Mode Control (Normal, Low-

Power, Safe Mode etc)
- Disable access to faulty re-

source

Type of col-
lected
health data

- Raw sensor/moni-
tor values

- Performance counters
- Fault/exception flags
- BIST results

- Fault/exception flags - Sensor readings
- Health data from units lower

in hierarchy

Type of re-
ported
health data

- IP-specific health
data

- Core health status
- Core sub-resource health

status

- Core health status
- Core sub-resource health

status

- Component health status
- Sub-component health status
- Parameters (temperature,

voltage etc)

Health man-
agement
modules

- Embedded instru-
ments

- Local fault manager +
Health map

- Health-aware task sched-
uler

- Local fault manager +
Health map

- System/global fault manager
+ health map

The columns here represent the classes of components. From the left to right, the ordering of the
component classes also represents the location in the hierarchy from execution units to system-level
controllers while CPU application cores potentially can perform both task execution and health mon-
itoring. The rows of the table show the properties of component classes:

 Examples: representatives of the class.

 Monitoring: means used for monitoring/detection of faults in functional resources for this
class.

SoC-HEALTH - Final Report Contents ● 37

 Active control in case of faults: means used for control of functional resources in case they
are found to be faulty in order to avoid erroneous behavior (active failure avoidance).

 Type of collected health data: the types of data collected by the health management system
for this component class.

 Type of reported health data: the types of information which can be extracted from the col-
lected health data.

 Health management modules: parts of the health management system which could be ac-
commodated by this component class.

The potential results of such follow-up activities can be directly applied to aerospace applications
(i.e. those being today developed in ESA, NASA or by other space agencies/companies) as well as to
other market segments such as companies producing high-cost electronic equipment for safety-crit-
ical systems (e.g. automotive, health-care) or systems targeted for long-term continuous operation
(telecom).

5.2 Higher Level OCFM Functions for AI-Based Systems

Another large and promising OCFM application domain is the Artificial Intelligence (AI) in the broad
sense. There is no doubt that today we are witnessing the dawn of the AI age. Along with general-
purpose Machine Learning and Deep Learning platforms such as e.g. TensorFlow, the AI paves its
path to our everyday life. Smart homes, smart cities, smart factories are a few examples of intelligent
automation and control technologies boosting comfort and productivity of industries and human be-
ings, improving their quality of living. Automotive industry is undergoing a revolutionary leap in in-
telligent transportation, while the aerospace segment players including ESA consider employing AI in
future space missions for a wide range of applications such as automated decision making, plan and
schedule execution, monitoring and control, image classification and data analytics.

Coming back to Earth, we see increasing usage of AI in big data analysis for various purposes such as
medical treatments, calculation of insurance and loan rates, weather forecasting, crisis prediction,
etc. All in all, the humankind already relies on technologies, where electronic processing, data col-
lection and control systems play the key role. Essentially, high-performance computing systems is the
cornerstone behind the AI, it's their body and the brain. Just like us, the humans, the AI systems need
healthy "organs" to operate correctly. The OCFM methodology offers a bottom-up approach for in-
situ big data collection and analysis, enabling instant failure recovery, predictive maintenance, self-
healing and self-adaptation to damage.

Today, with the rise of AI, the electronic systems gradually become intelligent enough to become
self-aware and situation aware. These two concepts are being extensively studied today with active
R&D work ongoing both in academia and industry. An important aspect in Self-Awareness is the abil-
ity of the system to comprehend and maintain its fitness in context of its goals and decisions as well
as to adapt the decisions in accordance with the system fitness and the current situation. This specific
ability, the Self-Health Awareness is the next emerging paradigm on the path starting from the classic
passive Fault Tolerance through Error Resilience and Fault Detection Isolation and Recovery (FDIR)
towards intelligent reliability management solutions.

SoC-HEALTH - Final Report Contents ● 38

6 Conclusions

This document summarizes the development and evaluation done in frames of the SoC-HALTH pro-
ject, which aimed at integration as well as the evaluation in terms of performance and HW overhead
of the OCFM technology that comprises an original HW architecture, fault handling and system health
monitoring methodology, and respective software functions.

The SoC-HEALTH OCFM framework is a semiconductor technology independent, abstract, and uni-
versal solution, which mainly aims at multi-core processing SoC (ASIC) applications. The future work
section summarizes foreseen developments needed to further extend the OCFM technology applica-
tion scope towards heterogeneous architectures.

The spectrum of faults targeted by the OCFM framework spans from transients to wear-out, whereas
the capability of handling these faults fully depends on the embedded instrumentation used in each
particular target system. Still the general philosophy behind assumes a scenario of gradual degrada-
tion of the protected system. Hence during the normal lifetime, the Health Map is just updated with
statistics of transients, but as the damage accumulates, the Health Awareness functions would help
the system to cope with permanent faults by employing health-aware task scheduling as well as im-
mediate fault handling and operation recovery.

Active fault protection methods, such as OCFM, would normally go beyond a simple fault masking
and need to be applied at different levels. Therefore, a cross-layer approach including higher system
levels as well as in-situ hardware checkers has been implemented. The OCFM framework collects the
diagnostic information from embedded instruments through IEEE 1687 IJTAG network in hardware
as well as from testing and diagnostic routines in software. Such a statistical information as well as
fault detection events are stored in system’s Health Map helping to track the underlying system’s
degradation trends.

Another important function of the OCFM is the immediate fault handling through fault detection,
isolation, classification, and recovery before the fault leads to a system failure. This includes the es-
timation of the fault parameters and their impact on health of system’s functional components. The
fault event statistics is also taken into account during the isolation and recovery actions. The fault
classification categories are specifically developed for complex multi-core SoC applications.

Actual faults occurring in the system due to different reasons may cause errors in registers, which
subsequently may lead to failures and system malfunction. In-situ fault detection and fitness moni-
toring right inside the hardware provides the fastest way to react to fault events. For each fault event,
the OCFM hardware would then provide both the detection and the basic diagnostic information to
the OS through the dedicated health monitoring network.

The TRL 4 SoC-HEALTH demonstration platform is comprised of an octa-core LEON3 soft CPU aug-
mented with OCFM facilities and implemented on Kintex7 FPGA as well as Linux OS enhanced with
fault management functionality for fault handling and health-aware scheduling.

SoC-HEALTH - Final Report Contents ● 39

The data collection and emergency signaling HW infrastructure based on an IEEE Std. 1687 (IJTAG)
network that collects real-time data from 1262 checkers embedded right inside the CPU offers im-
mediate fault detection and diagnosis. The OCFM achieves full performance with low overhead in
terms of latency, system load and used area (around 10% area in HW overhead).

The experimental evaluation has demonstrated that the OCFM hardware can handle over 100000
faults per second with the average single fault processing time being in the order of 10-3s, which
confirmed the expected high efficiency of IJTAG-based fault and fitness data collection approach.
Considering that faults should generally occur rarely in the system’s intended operating conditions,
this represents a small overhead in system load.

Future work in fault management and active fault tolerance has to be primarily focused on further
improvement of the fault handling functions and scenarios in the software and applications to het-
erogeneous high-performance computing platforms being currently developed by ESA.

The experimental results show that the OS interrupt latency has the dominating contribution to the
fault detection and isolation latency. Therefore, methods for reducing this part need to be evaluated
and applied in the future work to further improve the performance of the fault management proce-
dures.

